School of Sustainable Engineering and the Built Environment

Hydrosystems Engineering

Hydrosystems Engineering focuses on technical areas of hydrology, hydraulics, water resources engineering and environmental fluid dynamics which are interdisciplinary fields that synthesize knowledge from a wide range of subjects. The curriculum at Arizona State University presents challenging opportunities to both undergraduate and graduate students in Hydrosystems Engineering. The graduate program provides a strong foundation in basic principles, but remains flexible enough to meet changing needs within these fields. A particular emphasis in the Hydrosystems Engineering program is placed on the urban water cycle, climate interactions and land use using the Phoenix metropolitan area as an outdoor laboratory. The curriculum is complemented by a range of cutting-edge research activities. The Hydrosystems Engineering group at ASU receives national and international funding for a wide range of educational and research efforts with exciting opportunities available for undergraduate and graduate students and researchers. Field, laboratory, data analysis and modeling studies are available to interested students. Students are also encouraged to obtain courses and training in topic areas such as geographical information systems, numerical modeling, remote sensing, machine learning, water policy and management, and advanced data analysis techniques. Students who major in Hydrosystems Engineering go on to have careers in the fields of water resources engineering, hydraulics, hydrology including ground water hydrology and surface water hydrology, environmental fluid hydraulics, environmental remediation, sustainability and various others in the private or public sectors.

Hydrosystems Engineering faculty

- Enrique Vivoni, professor (specialty area coordinator)
- Peter Fox, professor
- Zhihua Wang, associate professor
- Giuseppe Mascaro, assistant professor
- Margaret Garcia, assistant professor
- Rebecca Muenich, assistant professor
- Tianfang Xu, assistant professor
- Ruijie Zeng, assistant professor
List of courses

The Hydrosystems Engineering graduate program consists of a set of core courses. Students are required to develop a Plan of Study (POS) which includes a minimum of four (4) of the indicated twelve (12) classes below:

CEE 440/545 Hydrology*
CEE 441/598 Water Resources Engineering*
CEE 466/598 Urban Water System Design*
CEE 540 Groundwater Hydrology
CEE 541 Surface Water Hydrology
CEE 543 Water Resources Systems
CEE 546 Advanced Watershed Hydrology
CEE 598 Water Reuse and Reclamation
CEE 598 Environmental Fluid Mechanics
CEE 598 Socio-hydrological Systems Analysis
CEE 598 Environmental Data and Analysis
CEE 598 Water Quality Modeling and Management

*Graduate credit and core course requirement is only possible if a student has not taken the undergraduate version of course at ASU.

Taking classes offered in different schools or departments is encouraged for a multidisciplinary education. Students shall have their advisor approve the Plan of Study and course registration each semester. Examples of other courses that could be taken in the Hydrosystems Engineering graduate degree program include:

CEE 549 Ecohydrology of Semiarid Landscapes
CEE 560 Soil and Groundwater Remediation
CEE 562 Environmental Biochemistry and Waste Treatment
CEE 564 Contaminant Fate and Transport
CEE 598 Atmospheric Convection and Thermodynamics
CEE 598 Hydrometeorology
CEE 598 Urban Environmental Systems
CEE 598 Uncertainty Analysis for Infrastructure Design
CEE 598 Application of Machine Learning in Civil and Environmental Engineering
CEE 506 Life Cycle Assessment
SOS 533 Sustainable Water
SOS 598 Water Challenges and Solutions
GLG 598 Geomorphology
GPH 569 Digital Analysis of Remotely Sensed Data
GPH 511 Fluvial Processes
GPH 598 Geographic Information Analysis
GPH 598 Urban Climates

Teaching Plan

The following table presents a three-year view of the undergraduate and graduate teaching plan for the Hydrosystems Engineering faculty. It covers the core courses and some of the recommended course from our faculty. Courses labeled with CEE 598 have an abbreviation of the course title. This plan is subject to change depending on faculty availability.

<table>
<thead>
<tr>
<th>Course</th>
<th>Spring 2020</th>
<th>Fall 2020</th>
<th>Spring 2021</th>
<th>Fall 2021</th>
<th>Spring 2022</th>
<th>Fall 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 341</td>
<td>Mascaro</td>
<td>Xu</td>
<td>Mascaro</td>
<td>Xu</td>
<td>Mascaro</td>
<td>Xu</td>
</tr>
<tr>
<td>CEE 440/545</td>
<td>Garcia</td>
<td>Vivoni</td>
<td>Garcia</td>
<td>Vivoni</td>
<td>Garcia</td>
<td>Vivoni</td>
</tr>
<tr>
<td>CEE 441/598</td>
<td>Zeng</td>
<td>Zeng</td>
<td>Zeng</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 466/598</td>
<td>Wang</td>
<td></td>
<td>Wang</td>
<td></td>
<td>Wang</td>
<td></td>
</tr>
<tr>
<td>CEE 540</td>
<td>Xu</td>
<td></td>
<td>Xu</td>
<td></td>
<td>Xu</td>
<td></td>
</tr>
<tr>
<td>CEE 541</td>
<td>Zeng</td>
<td></td>
<td>Zeng</td>
<td></td>
<td>Zeng</td>
<td></td>
</tr>
<tr>
<td>CEE 543</td>
<td>Mahmoud</td>
<td>Staff</td>
<td>Staff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 546</td>
<td>Mascaro</td>
<td>Mascaro</td>
<td>Mascaro</td>
<td></td>
<td>Mascaro</td>
<td></td>
</tr>
<tr>
<td>CEE 549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 EFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 SSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 EDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 WQMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 ACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 598 HYD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.S. program (thesis option)

The advisor (must be a tenure or tenure-track faculty in the Civil, Environmental and Sustainable Engineering (CESE) program) in consultation with the student will establish a Graduate Supervisory Committee (GSC). The GSC shall be composed of a minimum of three faculty with at least two being tenure or tenure-track CESE faculty. The participation of individuals from institutions external to ASU is encouraged. The advisor shall serve as the chair of the GSC, and must be a tenure or tenure-track faculty in the Hydrosystems Engineering faculty.

The Plan of Study (POS) must be in accordance with the Graduate College and CESE program requirements. This typically includes 24 credits of coursework, including at least four of the core graduate Hydrosystems Engineering classes, plus 6 credits of CEE 599 Thesis. CEE 590 (Reading and Conference) may be taken for no more than 3 credits. A 1 credit seminar, CEE 591 Hydrosystems Engineering Seminar, can be repeated up to three times to count as coursework.
M.S. program (non-thesis option)

The Graduate Supervisory Committee (GSC) shall consist of all tenure or tenure-track Hydrosystems Engineering faculty. The advisor shall serve as the chair of the GSC.

The Plan of Study (POS) must be in accordance with the Graduate College and Civil, Environmental and Sustainable Engineering (CESE) Program requirements. This includes 30 semester hours of coursework, including at least four of the core graduate Hydrosystems Engineering classes. CEE 593 (Applied Project) may be taken for no more than 3 credits (a grade of ‘B’ or above must be achieved to graduate). A 1 credit seminar, CEE 591 Hydrosystems Engineering Seminar, can be repeated up to three times to count as coursework.

Two options exist for successful completion of the non-thesis M.S. program:

Option 1: A final comprehensive exam will be administered by the Hydrosystems Engineering faculty twice per year, usually taken during the last semester of the program. The students will be tested on questions from four selected core courses taken within the Hydrosystems Engineering program. Course selection by students to be provided to Specialty Area Coordinator at the end of the semester prior to the exam date.

Option 2: An applied project completed under the supervision of the advisor. The students will be evaluated based on the oral and written communication skills exhibited on the final presentation of the applied project.

Ph.D. program (dissertation option)

Please refer to the Civil, Environmental and Sustainable Engineering Ph.D. manual for details on the degree program for Hydrosystems Engineering.